學術堂首頁 | 文獻求助論文范文 | 論文題目 | 參考文獻 | 開題報告 | 論文格式 | 摘要提綱 | 論文致謝 | 論文查重 | 論文答辯 | 論文發表 | 期刊雜志 | 論文寫作 | 論文PPT
學術堂專業論文學習平臺您當前的位置:學術堂 > 農學論文 > 漁業論文

甲殼動物爭斗行為影響因素與調控

時間:2020-01-13 來源:中國海洋大學學報(自然科學版) 作者:王芳,劉晶晶,劉大鵬 本文字數:10832字

  摘    要: 爭斗殘食已成為制約甲殼動物集約化養殖提質增效的瓶頸之一。甲殼動物的爭斗行為受諸多外部因素影響,同時受機體生理代謝和基因調控。本文介紹了甲殼動物爭斗行為的研究方法,概述了爭斗行為的影響因素、生理代謝特征及基因調控等研究成果,提出了系統開展甲殼動物爭斗行為量化的必要性及機制研究方向,以期為深入研究甲殼動物爭斗行為奠定基礎。

  關鍵詞: 甲殼動物; 爭斗行為; 環境因素; 能量代謝; 基因調控;

  Abstract: Fighting have become one of the bottlenecks, which restrict the quality and efficiency of intensive culture of crustaceans. The agonistic behaviors of crustacean are affected by a variety of external factors and regulated by the physiological metabolism and genes of the organism. This paper introduces the research methods of crustacean agonistic behavior, summarizes the factors affecting the agonistic behavior and the studies of its physiological metabolic and gene regulation, and proposes the necessity of systematic quantification of crustacean agonistic behavior and the research direction of the mechanism. These information will provide references to further researches on crustacean agonistic behavior.

  Keyword: crustacean; agonistic behavior; environmental factor; energy metabolism; gene regulation;

  爭斗殘食行為已成為制約甲殼動物集約化養殖發展的重要瓶頸。“爭斗行為”最早由Scott和Fredericson于1951年提出,是指同種動物個體間為獲得或持有食物、配偶或庇護所等資源在相遇時發生的爭搶和打斗行為[1,2,3,4]。爭斗行為是種內競爭的一個重要方面,可以讓獲勝者獲得更多的資源,以提高生存和福利條件[5]。目前,關于甲殼動物爭斗行為的研究多來自國外報道,研究方法以拍攝觀察為主,通過分析所拍攝的視頻,量化爭斗行為要素,分辨爭斗勝負,比較爭斗強度、爭斗策略和爭斗持久度等參數[6,7,8,9],并結合生理代謝[10,11,12]和相關基因[13,14]的表達,闡明甲殼動物爭斗行為發生的生理機制。相關研究主要聚焦在環境因素(如溫度、溶氧、光照等)和非環境因素(如規格、密度、資源價值、前期爭斗經驗)對其爭斗行為的影響及生理機制探討。

  1、 影響甲殼動物爭斗行為的因素

  1.1、 環境因素

  1.1.1、 溫度

  溫度是水生生態系統重要的生態因子之一,對水生動物的行為有重要影響[15,16,17]。研究發現,不適的溫度會增加動物的攻擊動機,導致爭斗行為發生[18]。高溫會引發憤怒和敵意情緒,增加暴力和爭斗發生概率,如隨著溫度的升高,生性好斗的美洲螯龍蝦(Homarus americanus)更加大膽,爭斗傾向增加[19]。而克氏原螯蝦(Procambarus clarkii)和鋸緣青蟹(Scylla serrata)的爭斗行為不受溫度影響[6,20]。此外,溫度通過影響甲殼動物的心率和機體代謝率[21,22]間接干擾爭斗行為。
 

甲殼動物爭斗行為影響因素與調控
 

  1.1.2、 溶解氧

  溶解氧通過改變甲殼動物的呼吸代謝影響其爭斗行為。如較低的溶氧水平影響寄居蟹(Pagurus bernhardus)的呼吸代謝率,降低其尋找定居點和庇護所以及發現捕食者和食物的能力,進而降低其爭斗能力[23]。甲殼動物的爭斗行為需要能量支持,缺氧對爭斗過程中攻擊者的影響要大于防御者,這是由于攻擊者在爭斗過程中所需能量更多[24]。對普通濱蟹(Carcinus maenas)的研究表明,低氧脅迫下蟹體內無氧代謝產物積累迅速,導致爭斗持續時間縮短,爭斗強度降低。這是由于在缺氧狀態下,甲殼動物的代謝成本更高,爭斗活動所需能量供應受到限制,長時間爭斗所需的能量成本超出了爭斗收益,因此,甲殼動物通過降低爭斗時間以為其他活動(如躲避捕食者)節省能量[9]。

  1.1.3、 光照

  光照會對甲殼動物爭斗行為產生一定的影響。光照時間增加或光照強度減弱導致巨大擬濱蟹(Pseudocarcinus gigas)爭斗加劇、殘食增加[25];生活在弱光環境下的克氏原螯蝦種內爭斗行為受光照周期的影響[26],完全黑暗和高強光照環境引起其不安情緒進而引發爭斗[27]。

  1.2、 非環境因素

  1.2.1 、規格

  規格影響甲殼動物爭斗持續的時間和強度。如規格(甲殼寬、體重)相當的蟹爭斗激烈,爭斗強度和持續時間高于規格差異較大的蟹[28],此時雙方遭受的損失也大,導致捕食時間下降和捕食效率降低等[29,30];在雌性天鵝絨蟹(Necora puber)爭斗過程中,大規格個體通常獲勝,但如爭斗雙方規格均勻匹配,爭斗持續時間則減少[31];大規格濱蟹因具較高的攻擊性,更能占據主導地位[32];大規格沙蟹(Liocarcinus depurator)間的爭斗持續時間要長于小規格個體[33]。此外,螯足規格與爭斗能力有關,如具較大螯足的雌性歐洲溪蟹(Potamon fluviatile)易在爭斗中取勝[34];當螯足規格相當時,其爭斗持續時間增加[8]。當蟹的對稱性器官(如左右螯足、步足等)出現缺失或規格和形態不對稱,也會影響爭斗行為。如濱蟹螯足規格的不對稱不會影響爭斗勝負,但第五步足規格的不對稱卻會降低其獲勝概率,這可能與第五步足具有維持身體穩定和平衡作用有關[35]。

  1.2.2、 性別

  性別對甲殼動物爭斗表現有顯著影響。雄性濱蟹間的爭斗強度要高于雌性,同性別個體間的爭斗概率高于異性[10];雄性擬穴青蟹(Scylla paramamosain)個體在與異性的爭斗中更易獲勝,這與雌雄個體間的螯足特征和生理狀態差異有關[30]。此外,性激素也會影響爭斗行為,如在雌性浸泡過的海水中,雄性天鵝絨蟹間的爭斗持續時間要長于無雌性浸泡海水組[36]。

  1.2.3、 種群密度

  種群密度增加因加劇了甲殼動物個體間的相遇率和對有限資源的爭奪,增加了爭斗發生的概率。高密度養殖條件下,中國明對蝦(Fenneropenaeus chinensis)間的爭斗顯著高于低密度養殖條件,且爭斗更為強烈[37];夜間成熟的濱蟹隨潮水游向岸邊尋找食物,因大量聚集,增加了爭斗行為的發生[38]。

  1.2.4、 獵物資源

  獵物資源價值通過改變甲殼動物的爭斗動機而影響爭斗。獵物資源量的增加降低了甲殼動物的爭斗強度,減少殘食發生[39];隨著貽貝(Mytilus edulis)密度的降低,濱蟹間爭斗持續時間逐漸提高[28]。將貽貝提取液加入雄性濱蟹生存的環境中,其爭斗持續時間縮短,這可能與濱蟹感知到無“真正的”獵物有關[10],說明蟹的爭斗表現與其感知的資源價值有關。此外,甲殼動物的爭斗行為還與獵物種類有關,如投喂活體餌料比人工餌料更容易引起中國明對蝦的爭勝行為發生[40]。

  1.2.5、 前期爭斗經驗

  前期爭斗經驗對甲殼動物的爭斗行為有一定影響。爭斗失敗降低了甲殼動物再次參與爭斗的意愿,而勝利者更容易再次參與爭斗[41]。如曾參與過爭斗的天鵝絨蟹再次與競爭者相遇后,更傾向發起爭斗[12]。前期爭斗經驗還會影響爭斗的結果,爭斗的勝利者在第二次爭斗時更易獲得勝利,失敗者更易再次失敗,這種現象被稱為贏家效應。如,對隆背張口蟹(Chasmagnathus convexus)來說,爭斗的失敗者相較于勝利者在第二次爭斗時更易處于劣勢地位[42]。贏家效應與再次參與爭斗的間隔時間密切相關。Bergman等[43]研究發現,隨著再次爭斗間隔時間的延長,銹斑龍蝦(Orconectes rusticus)的贏家效應逐漸降低,其獲勝概率減少。

  2、 甲殼動物爭斗行為的調控機理

  2.1、 能量代謝

  能量是細胞各項理化活動正常進行的基礎,影響生物的存活、生長和生理功能,在動物響應外界環境變化時發揮重要作用。甲殼動物的爭斗行為,被認為是一種“能量消耗的戰爭”,動物個體的能量代謝狀況決定其爭斗策略、爭斗成本和爭斗結果,獲勝個體消耗的能量更多,新陳代謝水平更高[11,44]。爭斗所需的能量由體內葡萄糖和組織中存儲的糖原構成。外部刺激和機體生理狀態影響血淋巴中葡萄糖水平的變化,可反映機體潛在的爭斗能力。如,寄居蟹爭斗過程中葡萄糖濃度升高,表明充足的能量儲備可能是決定個體爭斗獲勝的關鍵因素[45],但天鵝絨蟹血淋巴和組織中葡萄糖的水平不受爭斗行為影響[7]。這表明不同物種間血糖含量與爭斗行為表現的關系存在種間差異。

  在爭斗起始階段或較為激烈時的能量需求大部分是由無氧呼吸滿足的,而能量供給水平的下降,會導致甲殼動物攻擊性降低,從而降低爭斗時獲勝的概率[11,45]。然而,生物體通過無氧代謝的供能效率低于有氧代謝,僅能用于暫時的能量補充。糖酵解是動物細胞內重要的供能活動之一,在氧氣缺乏尤其劇烈爭斗時,甲殼動物通過糖酵解作用獲取能量的重要性增強[46]。

  乳酸是無氧呼吸的重要代謝產物之一。爭斗引起的血淋巴乳酸水平的提高已在濱蟹、寄居蟹和招潮蟹(Ucalacteal perplexa)等的研究中得以證實[11,35,45]。隨著無氧呼吸的進行,乳酸的積累以及糖原存儲的耗盡,可能會限制隨后的活動。例如,隨著乳酸積聚,濱蟹間爭斗持續的時間受限制[10];寄居蟹的攻擊性逐漸降低,敲擊對方貝殼的頻率逐漸下降[11]。此外,體內乳酸積累量還會影響甲殼動物在爭斗中的優勢地位,如爭斗中勝出的寄居蟹體內乳酸含量要低于失敗者[45]。

  2.2、 神經遞質

  甲殼動物的爭斗行為受神經遞質和激素等調控。不同爭斗能力的克氏原螯蝦體內神經遞質含量不同,而神經遞質含量的變化影響個體的爭斗能力[47]。其中,5-羥色胺(5-HT)系統與爭斗行為關系密切。研究表明,5-羥色胺水平的升高降低了脊椎動物的攻擊性[48],章魚胺能夠刺激昆蟲間的打斗[49]。但在甲殼動物爭斗過程中,高濃度的5-羥色胺通常與爭斗優勢者相關,而高濃度的章魚胺則與劣勢者相關[50]。如注射5-羥色胺后,龍蝦和鎧甲蝦(Munida quadrispina)展現出與優勢龍蝦相似的姿勢,而注射章魚胺后則展現出與劣勢者相似的姿勢[51,52]。這說明在動物進化過程中,生物胺系統對行為的指示作用發生了轉變。

  同時,5-羥色胺系統和能量代謝系統間也存在諸多聯系。5-羥色胺通過不同亞型的5-羥色胺受體(5-HTR)調節動物肝糖原的合成和骨骼肌的能量代謝[53];5-羥色胺系統與能量代謝系統的內在聯系,以及二者對甲殼動物爭斗行為的影響,探究5-羥色胺和能量代謝系統對甲殼動物爭斗行為的雙重調控作用十分必要。

  2.3、 爭斗基因

  甲殼動物爭斗行為與遺傳因素的關系成為關注的熱點。但對甲殼動物爭斗行為相關基因的研究更多的借鑒哺乳動物。對模式生物的研究證實,5-HT受體、腦源性神經營養因子(BDNF)、NMDA受體和FK506結合蛋白(FKBP5)等編碼基因[54,55,56]以及miR-34、miR-iab4等非編碼基因[57,58]影響動物的社交、認知和爭斗等行為。有關甲殼動物爭斗行為的相關基因研究有零星報道。徐澤文等[13]克隆了中華絨螯蟹(Eriocheir sinensis)5-HT1和5-HT2受體基因片段。其中,敲除與爭斗行為關系密切的5-HT1B和5-HT2A受體基因時,動物的攻擊行為增加[59]。

  代謝活動對甲殼動物行為的影響離不開轉錄或轉錄后水平上的調控,單胺氧化酶基因通過調節多種神經遞質水平影響爭斗行為,其中單胺氧化酶A基因(MAOA)的表達與5-羥色胺和去甲腎上腺素的降解有關,單胺氧化酶B基因(MAOB)的表達則與多巴胺降解有關[60]。兒茶酚胺氧位甲基轉移酶(COMT)在兒茶酚胺類遞質代謝中起關鍵作用,是多巴胺的主要代謝酶,經甲基化催化兒茶酚胺降解,通過控制突觸中多巴胺的代謝以調控甲殼動物的爭斗行為[61]。朱芳等[14]的研究表明,兒茶酚胺氧位甲基轉移酶基因的表達水平與三疣梭子蟹(Portunus trituberculatus)攻擊性直接相關,并影響中樞神經系統對爭斗行為的調控。

  3、 展望

  3.1、甲殼動物爭斗行為量化

  爭斗行為已成為制約我國甲殼動物集約化養殖提質增效的瓶頸,目前我國在該領域的研究鮮有涉及,更缺乏系統全面的量化研究。因此,系統開展甲殼動物爭斗行為的量化研究,查明爭斗行為與環境和非環境因素的關系,優化養殖設施,構建環境/非環境—爭斗行為的雙向預警模型,推動產業綠色發展十分必要。

  3.2、 甲殼動物爭斗行為調控機理

  能源物質是動物生命活動的源泉,也是反映甲殼動物爭斗能力的重要標志物,但其與爭斗行為的關系尚無明確定論。神經遞質和激素對甲殼動物爭斗行為的調控也存在種間差異,其調控機理尚不清晰。雖然已有的研究工作為認知代謝活動與甲殼動物爭斗行為的關系積累了豐富資料,但僅涉及幾種代謝物質,對甲殼動物爭斗行為的代謝生理機制缺少系統認知,亟須開展相關研究以全面揭示爭斗行為的代謝生理機制。

  近年來,我國在甲殼動物研究中雖已獲得大量基因資源,但關注點并未涉及爭斗行為,這導致對甲殼動物爭斗行為調控的認識存在諸多“灰色地帶”,這也造成了基因功能認識的缺失,產生基因資源的隱性浪費,更對基于基因功能選育新品種形成制約。隨著分子生物學技術的發展,將爭斗過程中占有優勢地位的個體與甲殼動物群體的基因表達譜聯系起來,開展分子水平下的爭斗行為調控機制研究尤為重要。

  參考文獻

  [1] Scott J P,Fredericson E.The causes of fighting in mice and rats[J].Physiological Zoology,1951,24(4):273-309.
  [2] Abele L G,Campanella P J,Salmon M.Natural history and social organization of the semiterrestrial grapsid crab Pachygrapsus transversus(Gibbes)[J].Journal of Experimental Marine Biology & Ecology,1986,104(1):153-170.
  [3] Glass C W,Huntingford F A.Initiation and resolution of fights between swimming crabs (Liocarcinus depurator)[J].Ethology,2010,77(3):237-249.
  [4] 劉秀霞,沈涓,周紅,等.動物攻擊行為的研究進展[J].中國畜牧獸醫,2009,36(4):196-200.Liu X X,Shen J,Zhou H,et al.The Research development of animal aggressive behavior[J].China Animal Husbandry and Veterinary Medicine,2009,36(4):196-200.
  [5] Xu X M,Chi Q S,Cao J,et al.The effect of aggression I:The increases of metabolic cost and mobilization of fat reserves in male striped hamsters[J].Hormones & Behavior,2018,98:55-62.
  [6] Gherardi F,Coignet A,Soutygrosset C,et al.Climate warming and the agonistic behaviour of invasive crayfishes in Europe.[J].Freshwater Biology,2013,58(9):1958-1967.
  [7] Thorpe K E,Huntingford F A,Taylor A C.Relative size and agonistic behaviour in the female velvet swimming crab,Necora puber (L.) (Brachyura,Portunidae)[J].Behavioural Processes,1994,32(3):235.
  [8] Smallegange I M,Jaap V D M.Interference from a game theoretical perspective:Shore crabs suffer most from equal competitors[J].Behavioral Ecology,2007,18(1):215-221.
  [9] Sneddon L U,Taylor A C,Huntingford F A.Metabolic consequences of agonistic behaviour:Crab fights in declining oxygen tensions[J].Animal Behaviour,1999,57(2):353-363.
  [10] Sneddon L U,Huntingford F A,Taylor A C.The influence of resource value on the agonistic behaviour of the shore crab,Carcinus maenas (L.)[J].Marine Behaviour & Physiology,1997,30(4):225-237.
  [11] Briffa M,Elwood R W.Use of energy reserves in fighting hermit crabs[J].Proceedings Biological Sciences,2011,271(1537):373.
  [12] Thorpe K E,Taylor A C,Huntingford F A.How costly is fighting?Physiological effects of sustained exercise and fighting in swimming crabs,Necora puber(L.) (Brachyura,Portunidae)[J].Animal Behaviour,1995,50(6):1657-1666.
  [13] 徐澤文,楊筱珍,黃堅,等.CODEHOP法設計引物克隆中華絨螯蟹5-ht_1和5-ht_2受體基因片段及序列分析[J].生物學雜志,2015,22(1):1-5.Xu Z W,Yang X Z,Huan J,et al.CODEHOP PCR primers for cloning 5-ht1 and5-ht2 receptor fragments in Eriocheir sinensis[J].Journal of Biology,2015,32(1):1-5.
  [14] Zhu F,Fu Y,Mu C,et al.Molecular cloning,characterization and effects of catechol-o-methyltransferase (comt) mRNA and protein on aggressive behavior in the swimming crab Portunus trituberculatus[J].Aquaculture,2018,495:693-702.
  [15] Thomas C W,Crear B J,Hart P R.The effect of temperature on survival,growth,feeding and metabolic activity of the southern rock lobster,Jasus edwardsii[J].Aquaculture,2000,185(1):73-84.
  [16] Lyon J P,Ryan T J,Scroggie M P.Effects of temperature on the fast-start swimming performance of an Australian freshwater fish[J].Ecology of Freshwater Fish,2010,17(1):184-188.
  [17] Biro P A,Beckmann C,Stamps J A.Small Within-Day Increases in temperature affects boldness and alters personality in coral reef fish[J].Proceedings Biological Sciences,2010,277(1678):71-77.
  [18] Anderson C A,Anderson K B,Dorr N,et al.Temperature and aggression[J].Advances in Experimental Social Psychology,2000,32(1):63-133.
  [19] Hoffman R S,Dunham P J,Kelly P V.Effects of water temperature and housing conditions upon the aggressiv[J].Journal of the Fisheries Research Board of Canada,1975,32(5):713-717.
  [20] Matheson K,Gagnon P.Effects of temperature,body size,and chela loss on competition for a limited food resource between indigenous rock crab (Cancer irroratus Say) and recently introduced green crab (Carcinus maenas L.)[J].Journal of Experimental Marine Biology & Ecology,2012,428(428):49-56.
  [21] Iftikar F I,Macdonald J,Hickey A J R.Thermal limits of portunid crab heart mitochondria:Could more thermo-stable mitochondria advantage invasive species?[J].Journal of Experimental Marine Biology & Ecology,2010,395(1):232-239.
  [22] González R A,Díaz F,Licea A,et al.Thermal preference,tolerance and oxygen consumption of adult white shrimp Litopenaeus vannamei (Boone) exposed to different acclimation temperatures[J].Journal of Thermal Biology,2010,35(5):218-224.
  [23] Briffa M,Haye K D L,Munday P L.High CO2 and marine animal behaviour:Potential mechanisms and ecological consequences[J].Marine Pollution Bulletin,2012,64(8):1519-1528.
  [24] Briffa M,Elwood R W.Cumulative or sequential assessment during hermit crab shell fights:Effects of oxygen on decision rules[J].Proc Biol Sci,2000,267(1460):2445-2452.
  [25] Gardner C,Maguire G B.Effect of photoperiod and light intensity on survival,development and cannibalism of larvae of the Australian giant crab Pseudocarcinus gigas (L.)[J].Aquaculture,1998,165(1-2):51-63.
  [26] Farca Luna A J,Hurtado-Zavala J I,Reischig T,et al.Circadian regulation of agonistic behavior in groups of parthenogenetic marbled crayfish,Procambarus sp.[J].Journal of Biological Rhythms,2009,24(1):64.
  [27] 李佳佳,張怡寧,陳翔宇,等.光照強度對克氏原螯蝦格斗行為的影響[J].水產科技情報,2014,41(1):14-16.Li J J,Zhang Y N,Chen X Y,et al.Effect of light intensity on fighting behavior of Procambarus clarkia[J].Fisheries Science & Technology Information,2014,41(1):14-16.
  [28] Smallegange I M,Sabelis M W,van der Meer J.Assessment games in shore crab fights[J].Journal of Experimental Marine Biology and Ecology,2007,351(1):255-266.
  [29] Huntingford F A,Taylor A C,Smith I P,et al.Behavioural and physiological studies of aggression in swimming crabs[J].Journal of Experimental Marine Biology & Ecology,1995,193(1-2):21-39.
  [30] Beattie C L,Pitt K A,Connolly R M.Both size and gender of mud crabs influence the outcomes of interference interactions[J].Journal of Experimental Marine Biology & Ecology,2012,434-435(6):1-6.
  [31] Thorpe K E,Huntingford F A,Taylor A C.Relative size and agonistic behaviour in the female velvet swimming crab,Necora puber (L.) (Brachyura,Portunidae)[J].Behavioural Processes,1994,32(3):235.
  [32] Meeren G I V D.Sex-and size-dependent mating tactics in a natural population of shore crabs Carcinus maenas[J].Journal of Animal Ecology,1994,63(2):307-314.
  [33] Glass C W,Huntingford F A.Initiation and resolution of fights between swimming crabs (Liocarcinus depurator)[J].Ethology,2010,77(3):237-249.
  [34] Gabbanini F,Gherardi F,Vannini M.Force and dominance in the agonistic behavior of the freshwater crab Potamon fluviatile[J].Aggressive Behavior,2010,21(6):451-462.
  [35] Sneddon L U,Swaddle J P.Asymmetry and fighting performance in the shore crab Carcinus maenas[J].Animal Behaviour,1999,58(2):431-435.
  [36] Smith I P,Huntingford F A,Atkinson R J A,et al.Mate competition in the velvet swimming crab Necora puber:Effects of perceived resource value on male agonistic behaviour[J].Marine Biology,1994,120(4):579-584.
  [37] 李玉全,孫霞.水生動物的爭勝行為[J].動物學研究,2013,34(3):214-220.Li YQ,Sun X.Agonistic behaviors of aquatic animals[J].Zoological Research,2013,34(3):214-220.
  [38] Kitching J A,Sloane J F,Ebling F J.The Ecology of lough ine:VIII.mussels and their predators[J].Journal of Animal Ecology,1959,28(2):331-341.
  [39] Romano N,Zeng C.Cannibalism of decapod crustaceans and implications for their aquaculture:A review of its prevalence,influencing factors,and mitigating methods[J].Reviews in Fisheries Science,2017,25(1):42-69.
  [40] 秦浩,李玉全.生存密度和餌料對中國明對蝦(Fenneropenaeus chinensis)爭勝行為和生長性能的影響[J].海洋與湖沼,2014,45(4):834-838.Qin H,Li Y Q.The effects of stocking density and food on agonistic behavior and growth performance in fenneropena[J].Oceanologia Et Limnologia Sinica,2014,45(4):834-838.
  [41] Hsu Y,Earley R L,Wolf L L.Modulation of aggressive behaviour by fighting experience:Mechanisms and contest outcomes[J].Biological Reviews,2010,81(1):33-74.
  [42] Kaczer L,Pedetta S,Maldonado H.Aggressiveness and memory:Subordinate crabs present higher memory ability than dominants after an agonistic experience[J].Neurobiology of Learning & Memory,2007,87(1):140-148.
  [43] Bergman D A,Huber R,Moore P A.Temporal dynamics and communication of winner-effects in the crayfish,Orconectes rusticus[J].Behaviour,2003,140(6):805-825.
  [44] Briffa M,Sneddon L U.Physiological constraints on contest behaviour[J].Functional Ecology,2007,21(4):627-637.
  [45] Briffa M,Elwood R W.Use of energy reserves in fighting hermit crabs[J].Proceedings Biological Sciences,2011,271(1537):373.
  [46] Abe H,Hirai S,Okada S.Metabolic responses and arginine kinase expression under hypoxic stress of the kuruma prawn Marsupenaeus japonicus[J].Comparative Biochemistry & Physiology Part A Molecular & Integrative Physiology,2007,146(1):40-46.
  [47] Huber R,Panksepp J B,Yue Z,et al.Dynamic interactions of behavior and amine neurochemistry in acquisition and maintenance of social rank in crayfish[J].Brain,Behavior and Evolution,2001,57(5):271-282.
  [48] Saudou F,Amara D A,Dierich A,et al.Enhanced aggressive behavior in mice lacking 5-HT1B receptor[J].Science,1994,265(5180):1875-1878.
  [49] Stevenson P A,Dyakonova V,Rillich J,et al.Octopamine and experience-dependent modulation of aggression in crickets[J].Journal of Neuroscience the Official Journal of the Society for Neuroscience,2005,25(6):1431.
  [50] Kravitz E A.Hormonal control of behavior:Amines and the biasing of behavioral output in lobsters.[J].Science,1988,241(4874):1775-1781.
  [51] Livingstone M S,Harris-Warrick R M,Kravitz E A.Serotonin and octopamine produce opposite postures in lobsters[J].Science,1980,208(4439):76-79.
  [52] Antonsen B L,Paul D H.Serotonin and octopamine elicit stereotypical agonistic behaviors in the squat lobster Munida quadrispina (Anomura,Galatheidae)[J].Journal of Comparative Physiology A,1997,181(5):501-510.
  [53] Laporta J,Peters T L,Merriman K E,et al.Serotonin (5-HT) affects expression of liver metabolic enzymes and mammary gland glucose transporters during the transition from pregnancy to lactation[J].Plos One,2013,8(2):269-284.
  [54] Grova N,Valley A,Turner J D,et al.Modulation of behavior and NMDA-R1 gene mRNA expression in adult female mice after sub-acute administration of benzo(a)pyrene[J].Neurotoxicology,2007,28(3):630-636.
  [55] Hartmann J,Wagner K V,Liebl C,et al.The involvement of FK506-binding protein 51 (FKBP5) in the behavioral and neuroendocrine effects of chronic social defeat stress[J].Neuropharmacology,2012,62(1):332-339.
  [56] Roullet F I,Wollaston L,Decatanzaro D,et al.Behavioral and molecular changes in the mouse in response to prenatal exposure to the anti-epileptic drug valproic acid[J].Neuroscience,2010,170(2):514-522.
  [57] Picao-Osorio J,Johnston J,Landgraf M,et al.MicroRNA-encoded behaviour in drosophila[J].Science,2015,350(6262):815.
  [58] Andolina D,Di M S,Accoto A,et al.MicroRNA-34 contributes to the stress-related behavior and affects 5-HT prefrontal/GABA amygdalar system through regulation of corticotropin-releasing factor receptor 1[J].Molecular Neurobiology,2018(1):1-12.
  [59] de Boer S F,Koolhaas J M.5-HT1A and 5-HT1B receptor agonists and aggression:A pharmacological challenge of the serotonin deficiency hypothesis[J].European Journal of Pharmacology,2005,526(1):125-139.
  [60] 劉華鋒.5-HT和MAOA基因多態性與攻擊行為的關聯性及營養素干預的實驗研究[D].長森:吉林大學,2010.Liu H F.Association Between 5-HT/MAOA Gene Polymorphisms and Aggressive Behavior and Experimental Study of Nutrient Intervention[D].Changchun:Jilin University,2010.
  [61] 張欽廷,趙敏,謝斌.COMT基因與精神分裂癥患者暴力攻擊行為關聯性的研究進展[J].法醫學雜志,2014,30(3):197-201.Zhang Q T,Zhao M,Xie B.Progress on association between COMT gene and violence behavior in patients with schizophrenia[J].Journal of Forensic Medicine,2014,30(3):197-201.

    王芳,劉晶晶,劉大鵬.甲殼動物爭斗行為研究進展[J].中國海洋大學學報(自然科學版),2020,50(02):31-36.
      相關內容推薦
    相近分類:
    • 成都網絡警察報警平臺
    • 公共信息安全網絡監察
    • 經營性網站備案信息
    • 不良信息舉報中心
    • 中國文明網傳播文明
    • 學術堂_誠信網站
    顶呱刮中奖彩票